Sequence Labeling Problem

 Hung-yi Lee
Sequence Labeling

$$
f \underset{\text { Sequence }}{:} X \underset{\text { Sequence }}{ }
$$

RNN can handle this task, but there are other methods based on structured learning (two steps, three problems).

Example Task

- POS tagging
- Annotate each word in a sentence with a part-of-speech.

- Useful for subsequent syntactic parsing and word sense disambiguation, etc.

Example Task

- POS tagging

The problem cannot be solved without considering the sequences.
$>$ "saw" is more likely to be a verb V rather than a noun N
$>$ However, the second "saw" is a noun N because a noun N is more likely to follow a determiner.

Outline

Hidden Markov Model (HMM)

Conditional Random Field (CRF)

Structured Perceptron/SVM

Towards Deep Learning

Outline

Hidden Markov Model (HMM)

Conditional Random Field (CRF)

Structured Perceptron/SVM

Towards Deep Learning

HMM

- How you generate a sentence?

Step 1

- Generate a POS sequence
- Based on the grammar

Step 2

- Generate a sentence based on the POS sequence
- Based on a dictionary
[Slide credit: Raymond J. Mooney]

HMM - Step 1

HMM - Step 2

$$
\begin{gathered}
\text { P("John saw the saw" |"PN V D N") } \\
=0.2 * 0.17 * 0.63 * 0.17
\end{gathered}
$$

HMM

$$
P(x, y)=P(y) P(x \mid y)
$$

$$
\begin{aligned}
P(y) & =P(P N \mid \text { start }) \\
& \times P(V \mid P N) \\
& \times P(D \mid V) \\
& \times P(N \mid D)
\end{aligned}
$$

$$
\begin{gathered}
P(x \mid y)=P(J o h n \mid P N) \\
\times P(\operatorname{saw} \mid V) \\
\times P(\text { the } \mid D) \\
\times P(\operatorname{saw} \mid N)
\end{gathered}
$$

HMM

$$
\text { x: John saw the saw. } \quad x=x_{1}, x_{2} \cdots x_{L}
$$

$$
\mathrm{y}: \mathrm{PN} \mathrm{~V} \quad \mathrm{~N} \quad y=y_{1}, y_{2} \cdots y_{L}
$$

$$
P(x, y)=P(y) P(x \mid y)
$$

Step 1

$$
\begin{aligned}
& P(y)=P\left(y_{1} \mid \text { start }\right) \times \prod_{l=1}^{L-1} P\left(y_{l+1} \mid y_{l}\right) \times P\left(\text { end } \mid y_{L}\right) \\
& \text { Stansition probability }
\end{aligned}
$$

$P(x \mid y)=\prod_{l=1}^{L} P\left(x_{l} \mid y_{l}\right) \quad$ Emission probability

HMM

- Estimating the probabilities

- How can I know P(V|PN), P(saw|V)?
- Obtaining from training data

Training Data:

$\left(x^{1}, \hat{y}^{1}\right) \stackrel{1}{1}$ Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.
$\left(x^{2}, \hat{y}^{2}\right){ }^{2} \mathrm{Mr}$./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./.
$\left(x^{3}, \hat{y}^{3}\right)^{3}$ Rudolph/NNP Agnew/NNP ,/,55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.

HMM

- Estimating the probabilities

$$
\begin{gathered}
P(x, y)= \\
\frac{P\left(y_{1} \mid s t a r t\right)}{\prod_{l=1}^{L-1} \frac{P\left(y_{l+1} \mid y_{l}\right)}{\left(y_{l+1}=s^{\prime} \mid y_{l}=s\right)}\left(\text { end } \mid y_{L}\right)} \prod_{l=1}^{L} \frac{\operatorname{count}\left(s \rightarrow s^{\prime}\right)}{\operatorname{count}(s)} \\
\frac{P\left(x_{l} \mid y_{l}\right)}{} \\
(s \text { is tags }) \\
\text { tag and } t \text { is word })
\end{gathered}
$$

HMM - How to do POS Tagging?

- We can compute $\mathrm{P}(\mathrm{x}, \mathrm{y})$

Hidden
Task: given x, find y

$$
\begin{aligned}
y & =\arg \max _{y \in Y} P(y \mid x) \\
& =\arg \max _{y \in Y} \frac{P(x, y)}{P(x)}
\end{aligned}
$$

$$
=\arg \max _{y \in \mathbb{Y}} P(x, y)
$$

HMM - Viterbi Algorithm

$$
\tilde{y}=\arg \max _{y \in \mathbb{Y}} P(x, y)
$$

- Enumerate all possible y
- Assume there are |S| tags, and the length of sequence y is L
- There are $|S|^{L}$ possible y
- Viterbi algorithm
- Solve the above problem with complexity $\mathrm{O}\left(\mathrm{L}|\mathrm{S}|^{2}\right)$

HMM - Summary

Problem 1:

Evaluation

Problem 2: Inference

Problem 3: Training

$$
F(x, y)=P(x, y)=P(y) P(x \mid y)
$$

$$
\tilde{y}=\arg \max _{y \in \mathbb{Y}} P(x, y)
$$

$P(y)$ and $P(x \mid y)$ can be simply obtained from training data

HMM - Drawbacks

- Inference:

$$
\tilde{y}=\arg \max _{y \in \mathbb{Y}} P(x, y)
$$

- To obtain correct results ...

$$
(x, \hat{y}): P(x, \hat{y})>P(x, y) \quad \text { Can HMM guarantee that? }
$$ not necessarily small

Transition probability:

$$
P(V \mid N)=9 / 10 \quad P(D \mid N)=1 / 10 \ldots \ldots
$$

Emission probability:

$$
P(a \mid V)=1 / 2 \quad P(a \mid D)=1 \ldots \ldots
$$

HMM - Drawbacks

- Inference:

$$
\tilde{y}=\arg \max _{y \in \mathbb{Y}} P(x, y)
$$

- To obtain correct results ...

$$
(x, \hat{y}): P(x, \hat{y})>\underset{\text { not necessarily small }}{P(x, y)} \text { Can HMM guarantee that? }
$$

Transition probability:

$$
P(V \mid N)=9 / 10 \quad P(D \mid N)=1 / 10 \ldots \ldots
$$

Emission probability:

$$
P(a \mid V)=1 / 2 \quad P(a \mid D)=1 \ldots \ldots
$$

$$
y_{y_{l-1}=N}^{P\left(y_{l} \mid y_{l-1}\right)} \prod_{y_{l}=? V}^{x_{l}=a} P\left(x_{l} \mid y_{l}\right)
$$

HMM - Drawbacks

$$
y_{l-1}=N \xrightarrow[P\left(y_{l} \mid y_{l-1}\right)]{\prod_{1}=a} P{ }^{y_{l}=? V^{\prime}} D
$$

$$
\tilde{y}=\arg \max _{y \in \mathbb{Y}} P(x, y)
$$

- To obtain correct results ...

$$
(x, \hat{y}): P(x, \hat{y})>P(x, y) \quad \text { Can HMM guarantee that? }
$$ not necessarily small

Transition probability:

$$
P(V \mid N)=9 / 10 \quad P(D \mid N)=1 / 10 \ldots \ldots
$$

Emission probability:

$$
P(a \mid V)=1 / 2 \quad P(a \mid D)=1 \ldots \ldots
$$

High probability for HMM

HMM - Drawbacks

- The (x, y) never seen in the training data can have large probability $\mathrm{P}(\mathrm{x}, \mathrm{y})$.
- Benefit:
- When there is only little training data
> More complex model can deal with this problem
$>$ However, CRF can deal with this problem based on the same model

High probability for HMM

Outline

Hidden Markov Model (HMM)

Conditional Random Field (CRF)

Structured Perceptron/SVM

Towards Deep Learning

CRF

$\mathrm{P}(x, y) \propto \exp (w \cdot \phi(x, y))$
$>\phi(x, y)$ is a feature vector. What does it look like?
$>w$ is a weight vector to be learned from training data
$>\exp (w \cdot \phi(x, y))$ is always positive, can be larger than 1

$$
\begin{aligned}
P(y \mid x) & =\frac{P(x, y)}{\sum_{y^{\prime}} P\left(x, y^{\prime}\right)} \quad \mathrm{P}(x, y)=\frac{\exp (w \cdot \phi(x, y))}{R} \\
& =\frac{\exp (w \cdot \phi(x, y))}{\sum_{y^{\prime} \in \mathbb{Y}} \exp \left(w \cdot \phi\left(x, y^{\prime}\right)\right)}=\frac{\exp (w \cdot \phi(x, y))}{Z(x)}
\end{aligned}
$$

$P(x, y)$ for CRF

$P(x, y) \propto \exp (w \cdot \phi(x, y)) \quad$ very different from HMM?

In HMM:
$P(x, y)=P\left(y_{1} \mid\right.$ start $) \prod_{l=1}^{L-1} P\left(y_{l+1} \mid y_{l}\right) P\left(\right.$ end $\left.\mid y_{L}\right) \prod_{l=1}^{L} P\left(x_{l} \mid y_{l}\right)$
$\log P(x, y)$

$$
\begin{aligned}
= & \log P\left(y_{1} \mid \text { start }\right)+\sum_{l=1}^{L-1} \log P\left(y_{l+1} \mid y_{l}\right)+\log P\left(\text { end } \mid y_{L}\right) \\
& +\sum_{l=1}^{L} \log P\left(x_{l} \mid y_{l}\right)
\end{aligned}
$$

$P(x, y)$ for CRF

$$
\begin{aligned}
& \log P(x, y)=\log P\left(y_{1} \mid s t a r t\right)+\sum_{l=1}^{L-1} \log P\left(y_{l+1} \mid y_{l}\right)+\log P\left(e n d \mid y_{L}\right) \\
&+\sum_{l=1}^{L} \log P\left(x_{l} \mid y_{l}\right)
\end{aligned}
$$

$P(x, y)$ for CRF

x : The dog ate the homework.

$$
\begin{aligned}
& \sum_{l=1}^{L} \log P\left(x_{l} \mid y_{l}\right) \\
& =\underline{\log P(\text { the } \mid D)}+\log P(\operatorname{dog} \mid N)+\log P(\text { ate } \mid V) \\
& +\underline{\log P(\text { the } \mid D)}+\log P(\text { homework } \mid N)
\end{aligned}
$$

$$
\begin{aligned}
& +\log P(\text { homework } \mid N) \times 1 \\
& =\sum_{s, t} \log P(t \mid s) \times N_{s, t}(x, y)
\end{aligned}
$$

$P(x, y)$ for CRF

$\log P(x, y)$

$$
\begin{aligned}
& P(x, y) \\
& =\log P\left(y_{1} \mid \text { start }\right)+\sum_{l=1}^{L-1} \log P\left(y_{l+1} \mid y_{l}\right)+\log P\left(\text { end } \mid y_{L}\right) \\
& +\sum_{l=1}^{L} \log P\left(x_{l} \mid y_{l}\right)
\end{aligned}
$$

$$
\log P\left(y_{1} \mid \text { start }\right)=\sum_{s} \log P(s \mid \text { start }) \times N_{\text {start }, s}(x, y)
$$

$$
\sum_{l=1}^{L-1} \log P\left(y_{l+1} \mid y_{l}\right)=\sum_{s, s^{\prime}}^{s} \log P\left(s^{\prime} \mid s\right) \times N_{s, s^{\prime}}(x, y)
$$

$$
\log P\left(e n d \mid y_{L}\right)=\sum_{s} \log P(e n d \mid s) \times N_{s, e n d}(x, y)
$$

$P(x, y)$ for CRF

$$
\log P(x, y)
$$

$=\sum_{s, t} \log P(t \mid s) \times N_{s, t}(x, y)$
$+\sum_{s} \log P(s \mid$ start $) \times N_{\text {start }, s}(x, y)$
$+\sum_{s, s^{\prime}} \log P\left(s^{\prime} \mid s\right) \times N_{s, s^{\prime}}(x, y)$
$+\sum_{s} \log P(e n d \mid s) \times N_{s, e n d}(x, y)$

$P(x, y)$ for CRF

 $\mathrm{P}(x, y) \propto \exp (w \cdot \phi(x, y))$However, we do not give w any constraints during training
$\phi(x, y)=\left[\begin{array}{c}\vdots \\ N_{s, t}(x, y) \\ \vdots \\ \vdots \\ N_{s t a r t, s}(x, y) \\ \vdots \\ \vdots \\ N_{s, s^{\prime}}(x, y) \\ \vdots \\ \vdots \\ N_{s, e n d}(x, y) \\ \vdots\end{array}\right]$

Feature Vector

- What does $\phi(x, y)$ look like?

- $\phi(x, y)$ has two parts
- Part 1: relations between tags and words
- Part 2: relations between tags If there are |S| possible tags, |L| possible words
Part 1 has $|S| X|L|$ dimensions

Part 1	Value
D, the	2
D, dog	0
D, ate	0
D, homework	0
$\ldots \ldots .$.	$\ldots . .$.
N, the	0
N, dog	1
N, ate	0
N, homework	1
......	$\ldots . . .$.
V, the	0
V, dog	0
V, ate	1
V, homework	0
......	$\ldots . . .$.

Feature Vector $N_{D_{0}}(x, y) \rightarrow D_{0,}$
 D, V 0

- What does $\phi(x, y)$ look like?
x : The dog ate the homework.
y: $\begin{array}{llllll} & \mathrm{D} & \mathrm{N} & \mathrm{V} & \mathrm{D} & \mathrm{N}\end{array}$

N, D	0
N, N	0
N, V	1
$\ldots \ldots .$.	$\ldots \ldots$.
V, D	1
V, N	0
V, V	0
$\ldots \ldots .$.	$\ldots \ldots$.
Start, D	1
Start, N	0
$\ldots \ldots .$.	$\ldots \ldots$.
End, D	0
End, N	1

Feature Vector

- What does $\phi(x, y)$ look like?
x : The dog ate the homework.
y: D N V D N

ork.
	N, D	0
	N, N	0
	N, V	1

	V, D	1
	V, N	0
	V, V	0

	Start, D	1
	Start, N	0

!	End, D	0
	End, N	1

$$
P(y \mid x)
$$

CRF - Training Criterion
 $$
=\frac{P(x, y)}{\sum_{y^{\prime}} P\left(x, y^{\prime}\right)}
$$

- Given training data: $\left\{\left(x^{1}, \hat{y}^{1}\right),\left(x^{2}, \hat{y}^{2}\right), \cdots\left(x^{N}, \hat{y}^{N}\right)\right\}$
- Find the weight vector w^{*} maximizing objective function $O(w)$:

$$
w^{*}=\arg \max _{w} \mathrm{O}(w) \quad \mathrm{O}(w)=\sum_{n=1}^{N} \log P\left(\hat{y}^{n} \mid x^{n}\right)
$$

$$
\log P\left(\hat{y}^{n} \mid x^{n}\right)=\underset{ }{\substack{\text { Maximize what } \\ \text { we observe }}} \log P\left(x^{n}, \hat{y}^{n}\right)-\log \sum_{y^{\prime}} P\left(x^{n}, y^{\prime}\right)
$$

CRF - Gradient Ascent

Gradient descent

Find a set of parameters θ minimizing cost function $C(\theta)$

$$
\theta \rightarrow \theta-\eta \nabla C(\theta)
$$

Opposite direction of the gradient

Gradient Ascent
Find a set of parameters θ maximizing objective function $\mathrm{O}(\theta)$

$$
\theta \rightarrow \theta+\eta \nabla O(\theta)
$$

The same direction of the gradient

CRF - Training

$$
\mathrm{O}(w)=\sum_{n=1}^{N} \log P\left(\hat{y}^{n} \mid x^{n}\right)=\sum_{n=1}^{N} O^{n}(w)
$$

Compute

$$
\nabla O^{n}(w)=\left[\begin{array}{c}
\partial \\
\vdots \\
\partial O^{n}(w) / \partial w_{s, s^{\prime}} \\
\vdots
\end{array}\right] \quad \frac{\partial O^{n}(w)}{\partial w_{s, s^{\prime}}} \text { very similar }
$$

CRF - Training

$$
\begin{aligned}
& P\left(y^{\prime} \mid x^{n}\right)=\frac{\exp \left(w \cdot \phi\left(x^{n}, y^{\prime}\right)\right)}{Z\left(x^{n}\right)} \\
& w_{s, t} \rightarrow w_{s, t}+\eta \frac{\partial O(w)}{\partial w_{s, t}}
\end{aligned}
$$

After some math

$$
\frac{\partial O^{n}(w)}{\partial w_{s, t}}=\underline{N_{s, t}\left(x^{n}, \hat{y}^{n}\right)}-\sum_{y^{\prime}} P\left(y^{\prime} \mid x^{n}\right) N_{s, t}\left(x^{n}, y^{\prime}\right)
$$

If word t is labeled by tag s in training examples $\left(x^{n}, \hat{y}^{n}\right)$, then increase $w_{s, t}$

If word t is labeled by tag s in $\left(x^{n}, y^{\prime}\right)$ which not in training examples, then decrease $w_{s, t}$

$$
P\left(y^{\prime} \mid x^{n}\right)=\frac{\exp \left(w \cdot \phi\left(x^{n}, y^{\prime}\right)\right)}{Z\left(x^{n}\right)}
$$

CRF - Training

$$
\nabla O(w)=\phi\left(x^{n}, \hat{y}^{n}\right)-\sum_{y^{\prime}} P\left(y^{\prime} \mid x^{n}\right) \phi\left(x^{n}, y^{\prime}\right)
$$

Stochastic Gradient Ascent

Random pick a data $\left(x^{n}, \hat{y}^{n}\right)$

$$
\mathrm{w} \rightarrow w+\eta\left(\phi\left(x^{n}, \hat{y}^{n}\right)-\sum_{y^{\prime}} P\left(y^{\prime} \mid x^{n}\right) \phi\left(x^{n}, y^{\prime}\right)\right)
$$

CRF - Inference

- Inference

$$
\begin{aligned}
& \begin{array}{l}
y=\arg \max _{y \in Y} P(y \mid x)=\arg \max _{y \in Y} P(x, y) \\
\quad=\arg \max _{y \in Y} w \cdot \phi(x, y) \quad \text { Done by Viterbi as well } \\
P(x, y) \propto \exp (w \cdot \phi(x, y))
\end{array}, l
\end{aligned}
$$

CRF v.s. HMM

- CRF: increase $P(x, \hat{y})$, decrease $P\left(x, y^{\prime}\right)$

HMM does not do that

- To obtain correct results ...

$$
(x, \hat{y}): P(x, \hat{y})>P(x, y)
$$

CRF more likely to achieve that than HMM

$$
\underset{y_{i-1}=N \xrightarrow[P\left(y_{i} \mid y_{i-1}\right)]{y_{i}=?}}{\substack{x_{i}=a \\ H M M: V \\ \text { CRF:D }}}
$$

Synthetic Data

- $x_{i} \in\{a-z\}, y_{i} \in\{A-E\}$
- Generating data from a mixed-order HMM
- Transition probability:
- $\alpha P\left(y_{i} \mid y_{i-1}\right)+(1-\alpha) P\left(y_{i} \mid y_{i-1}, y_{i-2}\right)$
- Emission probability:
- $\alpha P\left(x_{i} \mid y_{i}\right)+(1-\alpha) P\left(x_{i} \mid y_{i}, x_{i-1}\right)$
- Comparing HMM and CRF
- All the approaches only consider 1-st order information
- Only considering the relation of y_{i-1} and y_{i}
- In general, all the approaches have worse performance with smaller α

Synthetic Data: CRF v.s. HMM

CRF - Summary

Problem 1:

 Evaluation$$
F(x, y)=P(y \mid x)=\frac{\exp (w \cdot \phi(x, y))}{\sum_{y^{\prime} \in \mathbb{Y}} \exp \left(w \cdot \phi\left(x, y^{\prime}\right)\right)}
$$

Problem 2: Inference

$$
\begin{aligned}
& \tilde{y}=\arg \max _{y \in \mathbb{Y}} P(y \mid x)=\arg \max _{y \in \mathbb{Y}} w \cdot \phi(x, y) \\
& w^{*}=\arg \max _{w} \prod_{n=1}^{N} P\left(\hat{y}^{n} \mid x^{n}\right) \\
& \mathrm{w} \rightarrow w+\eta\left(\phi\left(x^{n}, \hat{y}^{n}\right)-\sum_{y^{\prime}} P\left(y^{\prime} \mid x^{n}\right) \phi\left(x^{n}, y^{\prime}\right)\right)
\end{aligned}
$$

Outline

Hidden Markov Model (HMM)

 -
Conditional Random Field (CRF)

Structured Perceptron/SVM

Towards Deep Learning

Structured Perceptron

Problem 1:
Evaluation

Problem 2: Inference

$$
\tilde{y}=\arg \max _{y \in \mathbb{Y}} w \cdot \phi(x, y) \quad \text { Viterbi }
$$

$\forall n, \forall y \in \mathbb{Y}, y \neq \hat{y}^{n}:$

$$
\begin{aligned}
& w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)>w \cdot \phi\left(x^{n}, y\right) \\
& \tilde{y}^{n}=\arg \max _{y} w \cdot \phi\left(x^{n}, y\right) \\
& w \rightarrow w+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)
\end{aligned}
$$

Structured Perceptron v.s. CRF

- Structured Perceptron

$$
\begin{aligned}
& \tilde{y}^{n}=\arg \max _{y} w \cdot \phi\left(x^{n}, y\right) \\
& w \rightarrow w+\underline{\phi\left(x^{n}, \hat{y}^{n}\right)}-\frac{\phi\left(x^{n}, \tilde{y}^{n}\right)}{\text { Hard }}
\end{aligned}
$$

- CRF

$$
\mathrm{w} \rightarrow w+\eta\left(\frac{\phi\left(x^{n}, \hat{y}^{n}\right)}{}-\sum_{y^{\prime}} P\left(y^{\prime} \mid x^{n}\right) \phi\left(x^{n}, y^{\prime}\right)\right)
$$

Structured SVM

Problem 1: Evaluation

Problem 2: Inference

$$
\tilde{y}=\arg \max _{y \in \mathbb{Y}} w \cdot \phi(x, y) \quad \text { Viterbi }
$$

Consider margin and error:
Way 1. Gradient Descent
Way 2. Quadratic Programming
(Cutting Plane Algorithm)

Structured SVM - Error Function

- Error function: $\Delta\left(\hat{y}^{n}, y\right)$
- $\Delta\left(\hat{y}^{n}, y\right)$: Difference between y and \hat{y}^{n}
- Cost function of structured SVM is the upper bound of $\Delta\left(\hat{y}^{n}, y\right)$
- Theoretically, $\Delta\left(y, \hat{y}^{n}\right)$ can be any function you like
- However, you need to solve Problem 2.1
- $\bar{y}^{n}=\arg \max _{y}\left[\Delta\left(\hat{y}^{n}, y\right)+w \cdot \phi\left(x^{n}, y\right)\right]$

Example

$$
\hat{y}: A T T C G G G G A T
$$

$\Delta(\hat{y}, y)=3 / 10$

$$
y: A T T A G G A G A A
$$

In this case, problem 2.1 can be solved by Viterbi Algorithm

Performance of Different Approaches

Ref: Nguyen, Nam, and Yunsong Guo.
POS Tagging "Comparisons of sequence labeling algorithms and extensions." ICML, 2007.

Name Entity Recognition

Method	HMM	CRF	Perceptron	SVM
Error	9.36	5.17	5.94	5.08

Ref: Tsochantaridis, Ioannis, et al. "Large margin methods for structured and interdependent output variables." Journal of Machine Learning Research. 2005.

Outline

Hidden Markov Model (HMM)

 -
Conditional Random Field (CRF)

Structured Perceptron/SVM

Towards Deep Learning

How about RNN?

- RNN, LSTM
- Unidirectional RNN does not consider the whole sequence
- Cost and error not always related
- Deep 勝

- HMM, CRF, Structured Perceptron/SVM
- Using Viterbi, so consider the whole sequence 勝 ?
- How about Bidirectional RNN?
- Can explicitly consider the label dependency
- Cost is the upper bound of error

Integrated together

HMM, CRF, Structured Perceptron/SVM

- Explicitly model the dependency
- Cost is the upper bound of error

Integrated together

- Speech Recognition: CNN/RNN or LSTM/DNN + HMM
$P(x, y)=P\left(y_{1} \mid\right.$ start $) \prod_{l=1}^{L-1} P\left(y_{l+1} \mid y_{l}\right) P\left(\right.$ end $\left.\mid y_{L}\right) \prod_{l=1}^{L} \underline{P\left(x_{l} \mid y_{l}\right)}$
$P\left(a \mid x_{1}\right) P\left(b \mid x_{1}\right) \quad P\left(c \mid x_{1}\right) \ldots \ldots$
$P\left(x_{l} \mid y_{l}\right)=\frac{P\left(x_{l}, y_{l}\right)}{P\left(y_{l}\right)}$

RNN
$=\frac{P\left(y_{l} \mid x_{l}\right) P\left(x_{l}\right)}{P\left(y_{l}\right)}$
Count

Integrated together

- Semantic Tagging: Bi-directional RNN/LSTM + CRF/Structured SVM

Concluding Remarks

	Problem 1	Problem 2	Problem 3
HMM	$F(x, y)=P(x, y)$	Viterbi	Just count
CRF	$F(x, y)=P(y \mid x)$	Viterbi	Maximize $P(\hat{y} \mid x)$
Structured Perceptron	$F(x, y)=w \cdot \phi(x, y)$ (not a probability)	Viterbi	$F(x, \hat{y})>F\left(x, y^{\prime}\right)$
Structured SVM	$F(x, y)=w \cdot \phi(x, y)$ (not a probability)	Viterbi	$F(x, \hat{y})>F\left(x, y^{\prime}\right)$ with margins

The above approaches can combine with deep learning to have better performance.

Acknowledgement

- 感謝 曹爆文 同學於上課時發現投影片上的錯誤
- 感謝 Ryan Sun 來信指出投影片上的錯誤

Appendix

CRF - Training

$$
\begin{aligned}
O^{n}(w) & =\log \frac{\exp \left(w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)\right)}{Z\left(x^{n}\right)} Z\left(x^{n}\right)=\sum_{y^{\prime}} \exp \left(w \cdot \phi\left(x^{n}, y^{\prime}\right)\right) \\
& =\underline{w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)-\log Z\left(x^{n}\right)}
\end{aligned}
$$

$$
\frac{\partial O^{n}(w)}{\partial w_{s, t}}=\frac{N_{s, t}\left(x^{n}, \hat{y}^{n}\right)}{}
$$

$$
w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)
$$

The number of word t labeled as $\sin \left(x^{n}, \hat{y}^{n}\right)$

The value of the dimension in $\phi\left(x^{n}, \hat{y}^{n}\right)$ corresponding to $w_{s, t}$.

CRF - Training

$$
\begin{aligned}
O^{n}(w) & =\log \frac{\exp \left(w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)\right)}{Z\left(x^{n}\right)} Z\left(x^{n}\right)=\sum_{y^{\prime}} \exp \left(w \cdot \phi\left(x^{n}, y^{\prime}\right)\right) \\
& =\underline{w \cdot \phi\left(x^{n}, \hat{y}^{n}\right)-\log Z\left(x^{n}\right)}
\end{aligned}
$$

$$
\frac{\partial O^{n}(w)}{\partial w_{s, t}}=\underline{N_{s, t}\left(x^{n}, \hat{y}^{n}\right)}-\frac{1}{\underline{Z\left(x^{n}\right)} \frac{\partial Z\left(x^{n}\right)}{\partial w_{s, t}}}
$$

$$
=\sum_{y^{\prime}} \frac{\exp \left(w \cdot \phi\left(x^{n}, y^{\prime}\right) f\right.}{Z\left(x^{n}\right)} N_{s, t}\left(x^{n}, y^{\prime} \neq \sum_{y^{\prime}} P\left(y^{\prime} \mid x^{n}\right) N_{s, t}\left(x^{n}, y^{\prime}\right)\right.
$$

$$
\frac{\partial Z\left(x^{n}\right)}{\partial w_{s, t}}=\sum_{y^{\prime}} \exp \left(w \cdot \phi\left(x^{n}, y^{\prime}\right)\right) N_{s, t}\left(x^{n}, y^{\prime}\right)
$$

CRF v.s. HMM

- Define $\phi(x, y)$ you like
- For example, besides the features just described, there are some useful extra features in POS tagging.
- Number of times a capitalized word is labeled as Noun
- Number of times a word end with ing is labeled as Noun
- Can you consider this kind of features by HMM? Too sparse...

$$
P\left(x_{i}=A, x_{i} \text { is capitalized, } x_{i} \text { end with ing, } \ldots \mid y_{i}=N\right)
$$

Method 1:

$$
P\left(x_{i}=A \mid y_{i}=N\right) P\left(x_{i} \text { is capitalized } \mid y_{i}=N\right) \ldots \ldots
$$

Inaccurate assumption
Method 2. Give the distribution some assumptions?

